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Abstract—Differing from previous studies, where sliding mode
control theory-based rules are proposed for only the consequent
part of the network, the developed algorithm in this paper
applies fully sliding mode parameter update rules for both
the premise and consequent parts of the interval type-2 fuzzy
neural networks. The stability of the proposed learning algorithm
has been proved by using an appropriate Lyapunov function.
Then, the performance of the proposed learning algorithm is
tested on the identification of wing flutter data set available
online as a benchmark system and the prediction of Mackey-
Glass chaotic system. The simulation results indicate thatthe
proposed algorithm is significantly faster than the gradient-based
methods as well as providing a slightly better identification
performance. The reason for the fast convergence is that the
proposed parameter update rules do not have any matrix ma-
nipulations which makes them simple to be implemented in real-
time systems. In addition, the responsible parameter for sharing
the contributions of the lower and upper parts of the type-2
fuzzy membership functions is also tuned. Another prominent
feature of the proposed learning algorithm is to have a closed
form which makes it easier to implement than the other existing
learning methods, e.g. gradient-based methods.

Index Terms—Type-2 fuzzy neural networks, sliding mode
learning algorithm, nonlinear system identification.

I. I NTRODUCTION

Type-2 fuzzy logic systems (T2FLSs) are proposed as the
extensions of type-1 fuzzy logic systems (T1FLSs) in order
to be able to model uncertainties that invariably exist in
the rule base of the system and deal with noise [1]–[4].
Whereas membership functions (MFs) are totally certain in
type-1 fuzzy sets, they are themselves fuzzy in type-2 fuzzy
sets. The latter case results in a fact that the antecedent and
consequent parts of the rules are uncertain. As there are infinite
type-1 fuzzy MFs in the footprint of uncertainty of a type-
2 fuzzy MF, it is believed that the T2FLSs have the ability
of modeling uncertainties in the rule base better than their
type-1 counterparts. Therefore, T2FLSs appear to be a more
promising method for handling uncertainties such as noisy data
and variable working conditions both in modeling and control
purposes [5].

Fuzzy neural networks (FNNs) are shown to be more
powerful tools that combine the capability of fuzzy reasoning
to handle uncertain information and the capability of artificial

neural networks (ANNs) to learn from input-output data sets
in modeling nonlinear dynamic systems. There are number of
algorithms for the training of FNNs in literature. For instance,
whereas the gradient descent (GD) algorithm is a well-known
optimization method to tune the parameters of both ANNs
and FNNs [6], there are some drawbacks in this algorithm.
The most important issue is that the selection of smaller
learning rate is critical in GD algorithm as the learning can
get stuck in a local minima. Moreover, some instability issues
may occur if the value of learning rate is chosen too large.
Especially, in FNNs, another issue for a GD algorithm is that
the obtaining of the parameter update rules for the premise
part of the network is very complex. As an alternative to
GD-based methods, the use of evolutionary approaches has
also been suggested [7]. However, as these methods have
some stochastic operators such as mutation, crossover, etc.,
it is almost impossible to show the stability of learning.
Furthermore, there is no analytical way to choose the optimal
parameters of the aforementioned stochastic operators.

In order to cope with the mentioned issues above, sliding
mode control (SMC) theory-based algorithms are derived to
tune the parameters of ANNs and type-1 FNNs (T1FNNs) [8],
[9]. As SMC theory-based learning algorithms do not need any
partial derivatives and matrix manipulations in the adaptation
laws [10], [11], they are computationally more efficient than
the traditional learning techniques in online tuning of ANNs
and FNNs [12], [13]. Thus, the parameter update rules are
much simpler when compared to other algorithms, such as
GD-based methods. Furthermore, since SMC theory-based
learning algorithms benefit from mathematical stability anal-
ysis, they are more robust against the parameter uncertainties
in the system. Motivated by the successful results of these
learning algorithms in T1FNNs, similar derivations for the
training of type-2 FNNs (T2FNNs) are also proposed [14],
[15].

In this paper, the major contributions to the T2FNNs are
as follows: the first is the proposal of fully SMC theory-
based learning rules whereas all similar studies in literature
consider SMC theory-based rules for only limited number of
parameters. For instance, the parameter update rules for the
center values of the type-2 fuzzy MFs in [14] do not have



SMC theory-based rules. The second contribution of this paper
is that the proposed algorithm tunes the sharing of the lower
and upper MFs in a T2FNN which allows us to manage non-
uniform uncertainties in the rule base of T2FLSs.

II. T YPE-2 FUZZY LOGIC SYSTEMS (T2FLSS)

A. T2FLSs Overview

A first-order interval type-2 Takagi-Sugeno-Kang (TSK)
fuzzy if-thenrule base withI input variables is preferred in this
investigation. Where the consequent parts are crisp numbers,
the premise parts are type-2 fuzzy functions. Therth rule is
as follows:

Rr : If x1 is Ã1 j . . . andxi is Ãik and. . . andxI is ÃIl then

fr =
I

∑
i=1

ari xi +br (1)

wherexi(i = 1...I) are the inputs of the type-2 TSK model,
Ãik is the kth type-2 fuzzy MF(k = 1...K) corresponding to
the inputith variable,K is the number of MFs for theith input
which can be different for each input. The parametersar and
br stand for the consequent part andfr(r = 1...N) is the output
function.

The upper and lower type-2 fuzzy Gaussian MFs with an
uncertain standard deviation (Fig. 1) can be represented as
follows:
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wherecik is the center value of thekth type-2 fuzzy set for the
ith input. The parametersσ ik andσ ik are standard deviations
for the upper and lower MFs.
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Fig. 1: Type-2 Gaussian fuzzy MF with uncertain standard
deviation

B. Interval Type-2 A2-CO TSK Model

The structure used in this investigation is called A2-C0
fuzzy system [16]. In such a structure, first, the lower and
upper membership degreesµ and µ are determined for each
input signal being fed to the system. Next, the firing strengths
of the rules using theprod t-norm operator are calculated as
follows:

wr = µ
Ã1
(x1)∗ µ

Ã2
(x2)∗ · · ·µ ÃI

(xI )

wr = µ Ã1(x1)∗ µ Ã2(x2)∗ · · ·µ ÃI(xI ) (4)

The consequent part corresponding to each fuzzy rule is
a linear combination of the inputsx1, x2 ...xI . This linear
function is called fr and is defined as in (1). The output of
the network is calculated as follows:

yN = q
N

∑
r=1

fr w̃r +(1−q)
N

∑
r=1

fr w̃r (5)

wherew̃r and w̃r are the normalized values of the lower and
the upper output signals from the second hidden layer of the
network as follows:

w̃r =
wr

∑N
i=1wr

and w̃r =
wr

∑N
i=1wr

(6)

The design parameter,q, weights the sharing of the lower
and upper firing levels of each fired rule. This parameter can
be a constant (equal to 0.5 in most cases) or a time varying
parameter. In this investigation, the latter is preferred.In other
words, the parameter update rules and the proof of the stability
of the learning process are given for the case of an adaptable
q.

The following vectors can be specified:
W̃(t) =

[
w̃1 (t) w̃2 (t) ... w̃N (t)

]T
,

W̃(t) =
[
w̃1 (t) w̃2 (t) ... w̃N (t)

]T
andF = [ f1 f2 ... fN]

The following assumptions have been made in this investi-
gation: The time derivative of both the input signals and output
signal can be considered bounded:

|ẋi(t)| ≤ Bẋ, min(x2
i (t)) = Bx2, (i = 1. . . I) and |ẏ(t)| ≤ Bẏ ∀t

(7)
whereBẋ, Bx2 andBẏ are assumed to be some known positive
constants.

III. SLIDING MODE CONTROL THEORY-BASED LEARNING

ALGORITHM

The zero value of the learning error coordinate can be
defined as a time-varying sliding surface in (8). The condition
defined in (8) guarantees that when the system is on the sliding
surface, the output of the network,yN(t), will perfectly follow
the desired output signal,y(t), for all time t > th. The time
instantth is defined to be the reaching time for beinge(t) = 0.

S
(
e(t)

)
= e(t) = yN(t)− y(t) = 0 (8)

Definition: A sliding motion will appear on the sliding
manifold S(e(t)) = e(t) = 0 after a timeth, if the condition
S(t)Ṡ(t)< 0 is satisfied for allt in some nontrivial semi-open
subinterval of time of the form[t, th)⊂ (0, th).



The parameter update rules for the T2FNN proposed in this
paper are given by the following theorem.

Theorem 1:If the adaptation laws for the parameters of the
considered T2FNN are chosen as:

ċik = ẋi +(xi − cik)α1sgn(e) (9)

σ̇ ik =−

(
σ ik +

(σ ik)
3

(xi − cik)2

)
α1sgn(e) (10)

σ̇ ik =−

(
σ ik +

(σ ik)
3

(xi − cik)2

)
α1sgn(e) (11)

ȧri =−xi
qw̃r +(1−q)w̃r

(qw̃r +(1−q)w̃r)T(qw̃r +(1−q)w̃r)
αsgn(e) (12)

ḃr =−
qw̃r +(1−q)w̃r

(qw̃r +(1−q)w̃r)T(qw̃r +(1−q)w̃r)
αsgn(e) (13)

q̇=−
1

F(W̃−W̃)T
αsgn(e) (14)

whereα is taken as follows:

α ≥
(IBaBẋ+Bẏ)

2+ IBx2
(15)

then, given an arbitrary initial conditione(0), the learning error
e(t) will converge to zero within a finite timeth.

Proof: The reader is referred to Appendix.
Remark:Since the output of the T2FNN is quite sensitive to

the changes in the parameters of the antecedent parts, different
values for the learning rates of the antecedent and consequent
part parameters are used. In other words, a smaller value (α1)
is chosen for the antecedent parts.

IV. SIMULATION STUDIES

A system identification process is the finding of a math-
ematical relationship between the input and the output of
the system. In this study, time delayed inputs and outputs of
the system are fed into the identifier. The SMC theory-based
learning algorithm is used to estimate the parameters of the
T2FNN structure that the difference between the plant output
y(k) and the identifier outputyN(k) will be minimum for all
input values ofu(k).

As a performance criterion in the simulation studies, the
root-mean-squared-error (RMSE) given in (16) is used:

RMSE=

√
∑K

k=1(y(k)− yN(k))2

K
(16)

whereK is the number of samples.
It is to be noted that even if the network structure is the

same with the one in [17], the proposed learning rules in this
investigation are completely novel and fully sliding mode.In
all the examples in this section, the network is designed with
three inputs and one output. The inputs of the identifier are the
input signal to the plant and the two delayed signals from the
plant output with a discretization periodTo of 1ms. Each input
is fuzzified by using three Gaussian type-2 fuzzy MFs with

a fixed center and uncertain standard deviation. To be able to
make a fair comparison, each experiment has been realized
for ten times with a random initialization of the network
parameters, and the average numbers are given in the paper.

A. Example 1: Wing flutter data set

To compare the identification performance of both the
proposed learning algorithm and the conventional GD method,
an existing benchmark data set is used: wing flutter data
set available online [18]. Whereas Fig. 3(a) demonstrates the
output of the model and the real-time system for the training
data only, Fig. 3(b) shows the response of the system for the
test data. RMSE values versus epoch number which indicates
a stable learning with the proposed learning algorithm is also
presented in Fig. 3(c). As can been from these figures, the
T2FNN gives accurate modeling results. Thanks to the novel
fully sliding mode parameter update rules in this paper, the
presented results are significantly better when compared to
the ones in [19]. In Fig. 3(d), the adaptation of the parameter
q is presented which is also learnt by the proposed algorithm.
By doing so, the contributions of the upper and lower MFs
are also tuned during the simulations.
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Fig. 2: The output of the model and the T2FNN for the training
data (a) The output of the model and the T2FNN for the test
data (b) RMSE versus epoch number (c) The adaptation of the
parameter q (d) for the wing flutter data set

B. Example 2: Prediction of chaotic Mackey-Glass time series

As another comparison for the identification performance
of both the proposed learning algorithm and conventional
GD method, one more existing benchmark system is used:
Mackey-Glass chaotic system. Both algorithms are used to
predict the noisy chaotic Mackey-Glass time series. This
chaotic system is a well-known benchmark problem in the
literature described by the following dynamic equation [20]:

ẋ(t) = 0.2
x(t − τ)

1+ x10(t − τ)
−0.1x(t) (17)



The numerical values selected for the chaotic system above
areτ = 17, x(0) = 1.2 in this study.

The predictor goal is to predictx(t + 1) using the inputs
x(t − 3),x(t − 2),x(t − 1) and x(t). For each input, two MFs
are used. The number of training data is selected as 600, and
the number of test data is 476. As the measure of noise level,
signal to noise ratio (SNR) is used.

Figure 3 shows the convergence graphs of the proposed
learning algorithm for Mackey-Glass time series in the pres-
ence of white noise (SNR=50dB). As can be seen from these
figures, the convergence performance of the proposed method
is quite satisfactory even under noisy conditions.
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Fig. 3: The output of the model and the T2FNN for the training
data(a) The output of the model and the T2FNN for the test
data (b) RMSE versus epoch number (c) The adaptation of the
parameter q (d) for the Mackey-Glass system

V. A NALYSIS AND DISCUSSION

In Tables I and II, the comparison of GD technique and the
proposed SMC theory-based learning method is given with
respect to their identification performance and computation
time. It can be seen that the identification performance of
the proposed learning algorithm is slightly better than GD.
Moreover, the computation time of the proposed SMC theory-
based learning algorithm is significantly lower than the GD
method. This conclusion results in a fact that the proposed
method in this paper is more practical in real-time applications.

GD method includes the calculations of the partial deriva-
tives of the output with respect to the parameters which is a
very difficult task, and do not have any closed (explicit) form.
This feature brings a lot of difficulties during the coding of
the GD method. On the other hand, as can be seen from the
parameter update rules proposed in this paper, the algorithm
has a closed form. This results in a simpler and easier to debug
the coding process of the proposed identifier.

TABLE I: Comparison of different learning techniques for
wing flutter data set

Performance

Training Testing Computation time (s)

SMC-based learning 0.0135 0.0036 56.03
GD 0.0361 0.0112 77.10

TABLE II: Comparison of different learning techniques for
chaotic Mackey-Glass system

Performance

Training Testing Computation time (s)

SMC-based learning 0.0207 0.0225 47.80
GD 0.0297 0.1745 67.48

VI. CONCLUSIONS

A novel fully sliding mode parameter update rules have been
proposed for the training of interval T2FNNs for the identifi-
cation of a real-time wing flutter data set and the prediction
of chaotic Mackey-Glass time series. The simulation results
are promising for the potential of the proposed structure in
real time systems since the computation time of the proposed
algorithm is significantly lower than the GD method. The
reason for the fast convergence is that the proposed parameter
update rules do not have any matrix manipulations which
makes them simple to be implemented in real-time systems.
It is to be noted that these parameter update rules can also be
used for the control purposes in which the computation time
is prominent.

APPENDIX A
PROOF OFTHEOREM 1

The time derivative of (6) is calculated as follows:

˙̃wr =−w̃rKr + w̃r

N

∑
r=1

w̃rKr ;
˙̃wr =−w̃rKr + w̃r

N

∑
r=1

w̃rKr (18)

where
Aik =

xi − cik

σ ik
and Aik =

xi − cik

σ ik

Kr =
I

∑
i=1

AikȦik and Kr =
I

∑
i=1

AikȦik

If (9)-(11) are inserted into the equations above, (19) can
be obtained:

Kr = Kr =
I

∑
i=1

AikȦik =
I

∑
i=1

AikȦik = Iαsgn(e) (19)

By using the following Lyapunov function, the stability
condition is checked as follows:

V =
1
2

e2 (20)



The time derivative of (20) can be calculated as follows:

V̇ = ėe= e(ẏN − ẏ) (21)

Differentiating (5), the following term can be obtained:

ẏN = q̇
N

∑
r=1

fr w̃r +q
N

∑
r=1

( ḟr w̃r + fr ˙̃wr)− q̇
N

∑
r=1

fr w̃r

+(1−q)
N

∑
r=1

( ḟr w̃r + fr ˙̃wr) (22)

By using (18), (19) and (22), the following term can be
obtained:

ẏN = q̇
N

∑
r=1

fr w̃r +q
N

∑
r=1

(
ḟr w̃r + fr(−w̃rKr + w̃r

N

∑
r=1

w̃rKr)
)

−q̇
N

∑
r=1

fr w̃r

+(1−q)
N

∑
r=1

(
ḟr w̃r + fr(−w̃rKr + w̃r

N

∑
r=1

w̃rKr)
)

= q̇
N

∑
r=1

fr w̃r +q
N

∑
r=1

(
ḟr w̃r − Iαsgn(e) fr(w̃r − w̃r

N

∑
r=1

w̃r)
)

−q̇
N

∑
r=1

fr w̃r

+(1−q)
N

∑
r=1

(
ḟr w̃r − Iαsgn(e) fr(w̃r − w̃r

N

∑
r=1

w̃r)
)

(23)

The following equation is correct by definition:

N

∑
r=1

w̃r = 1 and
N

∑
r=1

w̃r = 1 (24)

By using (12), (13), (14) and (24), the following term can
be achieved:

ẏN = −
1

F(W̃−W̃)T
αsgn(e)

N

∑
r=1

fr(w̃r − w̃r)

+
N

∑
r=1

ḟr(qw̃r +(1−q)w̃r)

= −αsgn(e)

+
N

∑
r=1

[( I

∑
i=1

(ȧri xi +ari ẋi)+ ḃr

)

(qw̃r +(1−q)w̃r)
]

(25)

If (25) is inserted into the candidate Lyapunov function,
(26) can be obtained:

V̇ = ėe= e(ẏN − ẏ)

= e

[
−αsgn(e)+

N

∑
r=1

[( I

∑
i=1

(ȧri xi +ari ẋi)+ ḃr

)

(qw̃r +(1−q)w̃r)
]
− ẏ

]

= e

[
−αsgn(e)+

N

∑
r=1

[( I

∑
i=1

(
− (xiαsgn(e)

(qw̃r +(1−q)w̃r)

(qw̃r +(1−q)w̃r)T(qw̃r +(1−q)w̃r)
)xi +ari ẋi

)

−αsgn(e)
(qw̃r +(1−q)w̃r)

(qw̃r +(1−q)w̃r)T(qw̃r +(1−q)w̃r)

)

(qw̃r +(1−q)w̃r)
]
− ẏ

]

= e

[
−αsgn(e)

+
N

∑
r=1

[ I

∑
i=1

(
−αsgn(e)x2

i +ari ẋi(qw̃r +(1−q)w̃r)
)

−αsgn(e)
]
− ẏ

]

= e

[
−2αsgn(e)+

N

∑
r=1

[ I

∑
i=1

(
−αsgn(e)x2

i

+ ari ẋi(qw̃r +(1−q)w̃r)
)]

− ẏ

]

= − | e | 2α +e

[ N

∑
r=1

[ I

∑
i=1

(
−αsgn(e)x2

i

+ ari ẋi(qw̃r +(1−q)w̃r)
)]

− ẏ

]
(26)

V̇ < − | e | 2α+ | e |

[ N

∑
r=1

[ I

∑
i=1

(
−αBx2

+ BaBẋ(qw̃r +(1−q)w̃r)
)]

+Bẏ

]

< − | e | 2α+ | e |

[ N

∑
r=1

[
− IαBx2 + IBaBẋ(qw̃r

+ (1−q)w̃r)
]
+Bẏ

]

< − | e | 2α+ | e |

[
− IαBx2 + IBaBẋ(q

N

∑
r=1

w̃r

+ (1−q)
N

∑
r=1

w̃r)+Bẏ

]

<− | e | 2α+ | e |

[
− IαBx2 + IBaBẋ+Bẏ

]

<− | e |
(

2α + IαBx2

)
+ | e |

[
IBaBẋ+Bẏ

]
< 0 (27)
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