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Abstract—Differing from previous studies, where sliding mode
control theory-based rules are proposed for only the consagent
part of the network, the developed algorithm in this paper
applies fully sliding mode parameter update rules for both
the premise and consequent parts of the interval type-2 fuzz
neural networks. The stability of the proposed learning al@rithm
has been proved by using an appropriate Lyapunov function.
Then, the performance of the proposed learning algorithm is
tested on the identification of wing flutter data set availabé
online as a benchmark system and the prediction of Mackey-
Glass chaotic system. The simulation results indicate thathe
proposed algorithm is significantly faster than the gradien-based
methods as well as providing a slightly better identificatio
performance. The reason for the fast convergence is that the
proposed parameter update rules do not have any matrix ma-
nipulations which makes them simple to be implemented in rela
time systems. In addition, the responsible parameter for séring
the contributions of the lower and upper parts of the type-2
fuzzy membership functions is also tuned. Another promineh
feature of the proposed learning algorithm is to have a closk
form which makes it easier to implement than the other existig
learning methods, e.g. gradient-based methods.

Index Terms—Type-2 fuzzy neural networks, sliding mode
learning algorithm, nonlinear system identification.

I. INTRODUCTION

neural networks (ANNS) to learn from input-output data sets
in modeling nonlinear dynamic systems. There are number of
algorithms for the training of FNNSs in literature. For inste,
whereas the gradient descent (GD) algorithm is a well-known
optimization method to tune the parameters of both ANNs
and FNNs [6], there are some drawbacks in this algorithm.
The most important issue is that the selection of smaller
learning rate is critical in GD algorithm as the learning can
get stuck in a local minima. Moreover, some instability ssu
may occur if the value of learning rate is chosen too large.
Especially, in FNNs, another issue for a GD algorithm is that
the obtaining of the parameter update rules for the premise
part of the network is very complex. As an alternative to
GD-based methods, the use of evolutionary approaches has
also been suggested [7]. However, as these methods have
some stochastic operators such as mutation, crossover, etc
it is almost impossible to show the stability of learning.
Furthermore, there is no analytical way to choose the optima
parameters of the aforementioned stochastic operators.

In order to cope with the mentioned issues above, sliding
mode control (SMC) theory-based algorithms are derived to
tune the parameters of ANNs and type-1 FNNs (T1FNNs) [8],
[9]. As SMC theory-based learning algorithms do not need any

Type-2 fuzzy logic systems (T2FLSs) are proposed as tpartial derivatives and matrix manipulations in the adtqa
extensions of type-1 fuzzy logic systems (T1FLSs) in ordéaws [10], [11], they are computationally more efficientrtha

to be able to model uncertainties that invariably exist ithe traditional learning techniques in online tuning of ASIN
the rule base of the system and deal with noise [1]-[4nd FNNs [12], [13]. Thus, the parameter update rules are
Whereas membership functions (MFs) are totally certain much simpler when compared to other algorithms, such as
type-1 fuzzy sets, they are themselves fuzzy in type-2 fuz@D-based methods. Furthermore, since SMC theory-based
sets. The latter case results in a fact that the antecedent Barning algorithms benefit from mathematical stabilityalan
consequent parts of the rules are uncertain. As there anéténfi ysis, they are more robust against the parameter uncégsint
type-1 fuzzy MFs in the footprint of uncertainty of a typein the system. Motivated by the successful results of these
2 fuzzy MF, it is believed that the T2FLSs have the abilitfearning algorithms in TIFNNs, similar derivations for the
of modeling uncertainties in the rule base better than thefaining of type-2 FNNs (T2FNNSs) are also proposed [14],
type-1 counterparts. Therefore, T2FLSs appear to be a m{t8].
promising method for handling uncertainties such as naggg d  In this paper, the major contributions to the T2FNNs are
and variable working conditions both in modeling and cantras follows: the first is the proposal of fully SMC theory-
purposes [5]. based learning rules whereas all similar studies in liteeat
Fuzzy neural networks (FNNs) are shown to be monsider SMC theory-based rules for only limited number of
powerful tools that combine the capability of fuzzy reasgni parameters. For instance, the parameter update rules dor th
to handle uncertain information and the capability of ani@éfi center values of the type-2 fuzzy MFs in [14] do not have



SMC theory-based rules. The second contribution of thipaB. Interval Type-2 A2-CO TSK Model

is that the proposed algorithm tunes the sharing of the lowerthe structure used in this investigation is called A2-CO
and upper MFs in a T2FNN which allows us to manage nofyzzy system [16]. In such a structure, first, the lower and

input signal being fed to the system. Next, the firing streagt
Il. TYPE-2 FUzZZY LOGIC SYSTEMS (T2FLSs) of the rules using th@rod t-norm operator are calculated as
follows:

A. T2FLSs Overview

A first-order interval type-2 Takagi-Sugeno-Kang (TSK) - _ _
fuzzyif-thenrule base witH input variables is preferred in this W = Hia () * Hig(%2) - [z (%) (4)
investigation. Where the consequent parts are crisp nusnber The consequent part corresponding to each fuzzy rule is
the premise parts are type-2 fuzzy functions. Ferule is g linear combination of the inputgs, x...x. This linear

W = Mg (%) * Uz, (X2) # - Hg (%)

as follows: function is calledf, and is defined as in (1). The output of
. o~ Lo~ the network is calculated as follows:
R o If xpis Aqj ... andx is Ay and... andx is A then N N
YN={( 21 fl +(1-q) y frw, )
r= r=1

|
fr = Zlarixi + by (1) N o~ .
is wherew, andw; are the normalized values of the lower and

the upper output signals from the second hidden layer of the

wherex;(i = 1..I) are the inputs of the type-2 TSK model, orvork as follows:

Ai is the K" type-2 fuzzy MF(k = 1...K) corresponding to

the inputit" variable K is the number of MFs for thé" input W = ,\:N;r andw; = NWr_ (6)
which can be different for each input. The parametgrand T 2w 2i=1 W

br stand for the consequent part afigr = 1...N) is the output ~ The design parameteg, weights the sharing of the lower
function. and upper firing levels of each fired rule. This parameter can

The upper and lower type-2 fuzzy Gaussian MFs with ape a constant (equal ta®in most cases) or a time varying
uncertain standard deviation (Fig. 1) can be representedpasameter. In this investigation, the latter is prefertacbther
follows: words, the parameter update rules and the proof of the iyabil

_ 1 (x — Ci)? of the learning process are given for the case of an adaptable
() = exp(— 5(672”) @ 4
ik

__ The following vectors can Pe specified:

) — ex 1 (% — cik)? 3) VjV(t) = (W (t) W (t)... W (1)] v

Hy () = exp| =3 W)= [Wi(t) W(t).. W ()] andF =[f1 o ..y

The following assumptions have been made in this investi-

wherec is the center value of thié" type-2 fuzzy set for the gation: The time derivative of both the input signals ancbatit
i input. The parametergy and g, are standard deV|at|onsSigna| can be considered bounded:

for the upper and lower MFs.

)
Oix

[%i(t)] < Bx, min(§(t)) =B, (i=1...1) and |y(t)| < By Wt

)
! whereBy, B,» andBy are assumed to be some known positive
0.9} 1 constants.
l 1. SLIDING MODE CONTROL THEORY-BASED LEARNING
il ALGORITHM
- il The zero value of the learning error coordinate can be
=% oo\ Upper defined as a time-varying sliding surface in (8). The conditi
o4 ] defined in (8) guarantees that when the system is on theglidin
o3y Lower MF ] surface, the output of the netwon(t), will perfectly follow
o2r ] the desired output signaj(t), for all timet > ty. The time
01 instantty, is defined to be the reaching time for beigg) = 0.
0 ¢ (center) S(e(t)) =et)=yn(t)—yt)=0 (8)

Definition: A sliding motion will appear on the sliding
anifold S(e(t)) = e(t) = O after a timety, if the condition
S(t)S(t) < 0 is satisfied for alt in some nontrivial semi-open
subinterval of time of the fornft,t,) C (0,t,).

Fig. 1. Type-2 Gaussian fuzzy MF with uncertain standarrcriI
deviation



The parameter update rules for the T2FNN proposed in ttasfixed center and uncertain standard deviation. To be able to

paper are given by the following theorem.

make a fair comparison, each experiment has been realized

Theorem 1if the adaptation laws for the parameters of théor ten times with a random initialization of the network

considered T2FNN are chosen as:

Cik = X + (X — Cik)a1sgn(e) 9)
3

Oj = — (Qik + %) aisgn(e) (10)
— \3

Ok = — (ﬁ.k + %) aisgn(e) (11)

Qi + (1— Q)W

parameters, and the average numbers are given in the paper.
A. Example 1: Wing flutter data set

To compare the identification performance of both the
proposed learning algorithm and the conventional GD method
an existing benchmark data set is used: wing flutter data
set available online [18]. Whereas Fig. 3(a) demonstrdtes t
output of the model and the real-time system for the training
data only, Fig. 3(b) shows the response of the system for the
test data. RMSE values versus epoch number which indicates

&i = —X— — ~—asgn(e) (12) a stable learning with the proposed learning algorithmss al
(W + (1 — )W) " (a, + (1 — )W) presented in Fig. 3(c). As can been from these figures, the
oW, + (17q)vl\,r T2FNN gives accurate modeling results. Thanks to the novel
br = (% 1 (1 o)) T (W, +(1_q)ﬁr)asgn(e) (13) fully sliding mode parameter update rules in this paper, the
— _ presented results are significantly better when compared to
- —%asgr{e) (14) the ones in [19]. In Fig. 3(d), the adaptation of the paramete
FIW-W)T g is presented which is also learnt by the proposed algorithm.
wherea is taken as follows: By doing so, the contributions of the upper and lower MFs
are also tuned during the simulations.
> (BaBx+By) (15)
- 2+1By 6 15

——The measured training data
- - -The model output

—— The measured test data
- - -The model output

then, given an arbitrary initial conditice{0), the learning error ¢
e(t) will converge to zero within a finite tima,. 2
Proof: The reader is referred to Appendix.
Remark: Since the output of the T2FNN is quite sensitive to  _,
the changes in the parameters of the antecedent partsediffe

The output
The output
o

ob——

" -1.5
values for the learning rates of the antecedent and conseque 100200 e 10 %00 %0 -
part parameters are used. In other words, a smaller vaije ( (@) (b)
is chosen for the antecedent parts. .
0.15 V]

IV. SIMULATION STUDIES

A system identification process is the finding of a math-% o
ematical relationship between the input and the output 0¢ .
the system. In this study, time delayed inputs and outputs ¢
the system are fed into the identifier. The SMC theory-base
learning algorithm is used to estimate the parameters of th_
T2FNN structure that the difference between the plant dutpu

(d)
y(k) and the identifier outpugn (k) will be minimum for all o
input values ofu(k). Fig. 2: The output of the model and the T2FNN for the training

As a performance criterion in the simulation studies, tHé2t@ (&) The output of the model and the T2FNN for the test
root-mean-squared-error (RMSE) given in (16) is used: data (b) RMSE versus epoch number (c) The adaptation of the
parameter q (d) for the wing flutter data set
AMSE— \/ S (k) (k)2

K B. Example 2: Prediction of chaotic Mackey-Glass time serie

whereK is the number of samples. As another comparison for the identification performance
It is to be noted that even if the network structure is th@f both the proposed learning algorithm and conventional
same with the one in [17], the proposed learning rules in tHgP method, one more existing benchmark system is used:
investigation are completely novel and fully sliding mote. Mackey-Glass chaotic system. Both algorithms are used to
all the examples in this section, the network is designeti wipredict the noisy chaotic Mackey-Glass time series. This
three inputs and one output. The inputs of the identifierlage tchaotic system is a well-known benchmark problem in the
input signal to the plant and the two delayed signals from ttiéerature described by the following dynamic equation]{20
plant output with a discretization peridd of 1ms. Each input : X(t—T1)
is fuzzified by using three Gaussian type-2 fuzzy MFs with X(t) = O.Zm —0.1x(t)

The parameter (q)
o
~

% 50 100 150 200 0.4
0 50
Epoch

(©

100 150 200

(16)

(17)



The numerical values selected for the chaotic system aboVeBLE |1 Comparison of different learning techniques for
aret =17, x(0) = 1.2 in this study. wing flutter data set

The predictor goal is to prediot(t + 1) using the inputs
X(t —3),x(t —2),x(t — 1) and x(t). For each input, two MFs I ——— I
a(re uszed.( The)nu(mber) of traifﬂ)ng data is selepcted as 600, and Training  Testing Computation time (s)
the number of test data is 476. As the measure of noise level, SMC'baéeDd learning o o3
signal to noise ratio (SNR) is used. : . :

Figure 3 shows the convergence graphs of the proposed
learning algorithm for Mackey-Glass time series in the pres
ence of white noise (SNR=50dB). As can be seen from the5RBLE 1I: Comparison of different learning techniques for
figures, the convergence performance of the proposed metffb@otic Mackey-Glass system
is quite satisfactory even under noisy conditions.

Performance

Performance

Training  Testing Computation time (s)

B s v 5 SMC-based leaming ~ 0.0207 ~ 0.0225 47.80
14 14 GD 0.0297  0.1745 67.48
§1.2 §1.2
2 1 2 1
= =
0.8 0.8
0.6 0.6
04100 200 300 400 500 600 I R I VI. CONCLUSIONS
Sample Sample L
@) (b) A novel fully sliding mode parameter update rules have been
proposed for the training of interval T2FNNSs for the identifi
015 ! cation of a real-time wing flutter data set and the prediction

o
o

of chaotic Mackey-Glass time series. The simulation result
are promising for the potential of the proposed structure in
real time systems since the computation time of the proposed
algorithm is significantly lower than the GD method. The
. reason for the fast convergence is that the proposed paaamet
R 0 10 10 200 update rules do not have any matrix manipulations which
(c) (d) makes them simple to be implemented in real-time systems.
It is to be noted that these parameter update rules can also be

Fig. 3: The output of the model and the T2FNN for the trainingsed for the control purposes in which the computation time
data(a) The output of the model and the T2FNN for the tegf prominent.

data (b) RMSE versus epoch number (c) The adaptation of the
parameter q (d) for the Mackey-Glass system APPENDIXA
PROOF OFTHEOREM 1

0.1

0.05, k\

The RMSE
The parameter (q)
o o
» o

o
)

2

The time derivative of (6) is calculated as follows:

V. ANALYSIS AND DISCUSSION N

N
In Tables | and II, the comparison of GD technique and thelt = ~WKr + W, erV—Vrﬁr; Wr = —Wr Ky + W r;Wfo (18)
proposed SMC theory-based learning method is given with B B
respect to their identification performance and computati§/here

. . e _ X —Cik x _ X —Cik

time. It can be seen that the identification performance of Ay = oo and Ay = S

the proposed learning algorithm is slightly better than GD. =ik Ik

Moreover, the computation time of the proposed SMC theory- ' . _ b -

based learning algorithm is significantly lower than the GD K, = _ZAikAik and K = _Z\AikAik

method. This conclusion results in a fact that the proposed = =

method in this paper is more practical in real-time appicat.  If (9)-(11) are inserted into the equations above, (19) can

GD method includes the calculations of the partial deriv&e obtained:
tives of the output with respect to the parameters which is a . . [ _
very difficult task, and do not have any closed (explicityfior Kr =K, = ZlAikAik = ZlAikAik =lasgn(e)  (19)
This feature brings a lot of difficulties during the coding of = =
the GD method. On the other hand, as can be seen from th®&y using the following Lyapunov function, the stability
parameter update rules proposed in this paper, the algoritbondition is checked as follows:
has a closed form. This results in a simpler and easier togdebu 1
the coding process of the proposed identifier. V= 592 (20)



The time derivative of (20) can be calculated as follows:
V =ée=e(yn—Y) (21)

Differentiating (5), the following term can be obtained:

N N _ N
q Zi frz\/r +d Z (fr@r + fr@r) —q Zl fr Wi
r= r=1 r=

Ha-a) (el + f,%) (22)

™M=

By using (18), (19) and (22), the following term can be
obtained:

o= Zfrw+qz(frw+fr K+ Y K

N .
= q) fiw + frw, —lasgn(e) fr (W, —W, W,
Gy i+ (it —lasgne) T~ 3 )

N N
+1-9) Y (frvlvr —lasgn(e) f, (W — W ZVLVr)) (23)

The following equation is correct by definition:

4

N ~
ZEV W =1 (24)
=1 =1

By using (12), (13), (14) and (24), the following term can
be achieved:

. 1 N o~
YN = ———=—=—0asgne fr (W, — W,
N F(V_V*W)T ( )rzl r( r

N

+3 filat +(1-a@)

= —asgn(e)
|

[(IZl &iXi + ari% +br)

(qV_Vr (1 _q)Wr)} (25)

If (25) is inserted into the candidate Lyapunov function,
(26) can be obtained:

V = ée=e(yn—Y)

—asgn(e g [(Izlanxl‘f'an)ﬁ +br)

J

= €

[E—

(% + (1 — )W)

<—|e|2a+|e]

(W, + (1 - q)W
(W + (1 Q)| y]

e| —asgn(e)

N |
+Zl[ (— asgn(e)? -+ aixi (W, + (1 - q){))

—asgn(e)] y}

— 2asgn(e) + [ (— asgn(e)x?

+ awk(a + (1- Q)] -]

= —|e|20+e

+ ik (W + (1- )Vlvr))} ] (26)

N
Vo< —|e|20+|e|[zi[ (—aB,

+ BaBx(al + (1)) | + By

N
< —lel2a+]e] [ [—IaBXerIBan(QEVr

r=1

+ (o)) +By]
N

—laB,2 +1BaBx(q Z W,
r=1

< —le|l2a+]|e]

+ %vlv +By}

—laBye + 1BaBx + By}

<—|e|(2cr+laBXz)+|e| {IBaBX+By]<0 (27)
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