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Abstract: Accurate automatic guidance of agricultural vehicles is essential for gaining the
ultimate benefit in agriculture. As an agricultural vehicle, tractors have more than one subsystem
interacting each other, e.g. yaw dynamics, longitudinal dynamics, implement dynamics, etc.
Instead of modeling the subsystem interaction prior to model-based control, we have developed
a control algorithm which learns the interactions by using the measured feedback error. In this
study, two PD controllers and two fuzzy neural networks are combined for controlling the yaw
and traction dynamics. While the former ensures the stability of the related subsystem, the
latter learns the system dynamics and becomes the leading controller. The interactions between
both subsystems are not taken into account explicitly, but are considered to be disturbances in
the control of each individual subsystem. A novel sliding mode control theory-based learning
algorithm is used to train the fuzzy neural networks, and the convergence of the parameters is
shown using a Lyapunov function.
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1. INTRODUCTION

As the worldwide food consumption is ever increasing
while the arable area is rather limited, increasing agri-
cultural productivity remains an important challenge for
mankind. Automation of agricultural machinery is one of
the ways to improve the efficiency and productivity of
various field operations. In the last decades, dimensions
and capacity of the machinery have expanded and the
productivity per hectare has increased at a very high rate.
The economic pressure, the continuously growing world
population and the increasing cost of manpower, force
agriculture to produce in a cost and labor efficient way.
To increase efficiency and to lighten the job of the people
employed in agriculture, there is a need for automation of
the tasks performed by the operator. An important task of
the machine operator during field operation is steering the
machinery accurately across the field. For example, during
planting it is very important to plant the new rows per-
fectly parallel and at equal distance to the previous rows to
facilitate mechanical weeding where the weed harrow has
to be carefully positioned with respect to the crop rows to
avoid damaging the crop. This can be a challenging and
very tiring job. Moreover, it has been observed that the
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steering accuracy decreases when more actions are asked
from the operator or when he gets tired. Therefore, several
automatic guidance systems have been developed, some of
which are already available on the market.

While RTK-GPS can provide very good absolute position-
ing accuracy, the performance of the currently available
machine guidance systems is rather limited due to the poor
performance of the automatic control systems used for this
purpose. The main reasons for this poor performance are
the complex vehicle kinematics and the large variation in
soil conditions which make that the PID controllers used
for these machine guidance systems have to be tuned very
conservatively. By this conservative tuning robustness of
the controller is obtained at the price of performance.
Moreover, the constraints of the mechanical system cannot
be taken into account directly in these controllers, such
that the ad hoc implementation of these constraints can
lead to suboptimal behavior of the system.

In this paper, as a solution to the problems of the conven-
tional controllers mentioned above, feedback error learning
(FEL) method is proposed as a model-free approach for
controlling the tractor dynamics. This method allows us to
take the impacts of other subsystems as the disturbances
into account. Moreover, the learning part in FEL is able
to adapt the parameters of the controllers of the tractor
model to soil conditions. Therefore, the potential of FEL
strategy for autonomous guidance of a small agricultural
tractor is investigated in this study.
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2. PROBLEM STATEMENT

In most cases, larger scale mechatronic systems can be
divided into different subsystems, where each subsystem
has its own characteristics and can be modeled and con-
trolled separately by means of its own inputs and outputs.
However, when the subsystem controllers are not aware
of the interactions between the different subsystems, they
will behave selfish and may deteriorate the performance of
the other subsystem controllers. Therefore, the combina-
tion of optimal subsystem controllers will often not result
in optimal control of the global system. By consequence,
it is important to make the subsystem controllers aware of
the interactions between the different subsystems. When
the subsystems are controlled by a model-based controller,
the subsystem model should thus combine the states and
inputs of the local subsystem and the impact from the
other subsystems.

If the impact from other units to the subsystem is known,
model-based approaches can be used to model the inter-
actions between the mechatronic subsystems. However,
most of the time, the interactions between mechatronics
subsystems are not so clear such that they cannot be easily
modeled. In such cases, either a polynomial approximation
of the real model structure can be used for which the
major variables influencing the output of the subsystem of
interest are identified through the use of genetic algorithms
or the interaction models can be estimated using model-
free techniques such as fuzzy logic theory, artificial neural
networks and fuzzy neural networks (FNNs).

FEL method was originally proposed in Kawato et al.
(1988) for robot control in which a neural network is
working with a PD controller. The output of the PD
controller is used as a learning error signal to train the
neural network. In this paper, this method is applied to
FNNs. Instead of trying to minimize an error function, the
learning parameters are tuned by the proposed algorithm
in a way to enforce the error to satisfy a stable equation.
The parameter update rules of FNNs are generated and
the learning algorithms for FNN using Lyapunov sense
of stability is proven. The learning algorithm proposed in
this paper is tested on a large scale mechatronics system
which consists of traction dynamics and yaw dynamics of a
tractor. In this study, the interactions between the mecha-
tronics subsystems have been modeled as a disturbance to
each other.

The main body of the paper contains five sections: In
section III, the mathematical model of a tractor is given.
In Section IV, the proposed sliding mode feedback-error-
learning approach is presented, and the parameter update
rules for FNNs are proposed for the case of Gaussian
membership functions. In Section V, the simulation results
are given. Finally, in Section VI, conclusions are presented.

3. THE MATHEMATICAL MODEL OF A TRACTOR

3.1 Yaw Motion Dynamics

The velocities and the sideslip angles at different locations
of the tractor are presented in Fig. 1(a). Similarly, the
forces at different locations of the tractor are shown in
Fig. 1(b).
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Fig. 1. Dynamic bicycle model for a tractor: (a) velocities
and slip angles (b) forces at different locations of the
system

The lateral dynamics of the tractor can be written as
follows Karkee and Steward (2010):

m(v̇c + ucγ) = Ft,f sin δ + Fl,f cos δ + Fl,r (1)

where m, Ft,f , Fl,f , Fl,r represent the mass of the tractor,
the traction and lateral forces on the front wheel, the
lateral force on the rear wheel, respectively.

The yaw dynamics of the tractor are written as follows:

Iz γ̇ = lf (Ft,f sin δ + Fl,f cos δ)− lrFl,r (2)

where lf , lr and Iz respectively represent the distance
between the front axle and the center of gravity of the
tractor, the distance between the rear axle and the center
of gravity of the tractor, and the moment of inertia of the
tractor.

The tire side slip angles must be calculated in order to
determine the forces caused by the slip. It is assumed
that the steering angle of the front wheel is small, and
this allows to the following approximations: sin δ ≈ δ and
cos δ ≈ 1. The side slip angles of the front and the rear
tires are written as follows:

αf =
vc + lfγ

uc
− δ and αr =

vc − lrγ

uc
(3)

To determine the lateral force on the tire, there are
many different approaches in literature. In this study, the
lateral tire forces are calculated using a linear model which
assumes these to be proportional to the slip angles in
Piyabongkarn et al. (2009); Geng et al. (2009)

Fl,i = −Cα,iαi i = {f, r} (4)

where Cα,i, i = {f, r}, represents the cornering stiffness
of the tires of the tractor. The tire cornering stiffness
parameters are the averaged slopes of the lateral force
characteristics in this method.

The equations of motion of the tractor are written in state
space form by combining (1), (2), (3) and (4) as follows:

[
v̇c
γ̇

]
=

[
A11 A12

A21 A22

] [
vc
γ

]
+

[
b1
b2

]
δ (5)

where
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A11 =−Cα,f + Cα,r

muc
,

A12 =
−lfCα,f + lrCα,r

muc
− uc,

A21 =
−lfCα,f + lrCα,r

Izuc
,

A22 =−
l2fCα,f + l2rCα,r

Izuc
,

b1 =
Cα,f

m
and b2 =

lfCα,f

Iz
(6)

3.2 Traction Dynamics

A quarter vehicle dynamics model is used to describe the
traction dynamics of the vehicle. In this approach, the
system model is written as follows:

Iω̇ =−rFt + T

mu̇c = Ft (7)

where I, ω, uc, r, Ft and T represent respectively the in-
ertial moment of the wheels of the vehicle, the angular
velocity of the wheels of the vehicle, the linear velocity of
the wheel of the vehicle, the radius of the wheels of the
vehicle, the traction force and the torque on the wheel of
the vehicle. These parameters are schematically illustrated
in Fig. 2.
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Fig. 2. The schematic view of the wheel

In order to reflect the effect from the yaw dynamics on the
longitudinal dynamics in real-life, an extra term has been
added to the model which is function of yaw rate. This
term always tries to decrease longitudinal velocity. It has
also a coefficient K, which can be chosen arbitrarily. The
interconnection term that describes the influence of the
yaw dynamics of the tractor is added into (7) as follows:

Iω̇ =−rFt + T −Kr | γ |
mu̇c = Ft −K | γ | (8)

where K represents the coefficient of the interaction term.

The traction force is written as follows:

µ(sj , c) =
Ft,j

Fz,j
j = {f, r} (9)

where µ(sj , c), Ft,j and Fz,j represent the adhesion coeffi-
cient, the traction force on the tire and the nominal vertical
force at wheel contact, respectively.

The longitudinal slip ratio is defined as follows:

s =


rω

uc
− 1 if uc > rω, uc ̸= 0 for braking

1− uc
rω

if uc < rω, rω ̸= 0 for driving

where s, r and ω represent the longitudinal slip ratio, the
radius of the wheel and the angular velocity of the wheel,
respectively. The adhesion coefficient is written as follows:

µ(s) =
2µpsps

s2p + s2
(10)

where µp and sp are the peak values for various road
conditions.

4. THE ADAPTIVE FUZZY NEURAL CONTROL
APPROACH

4.1 The Control Scheme and the Fuzzy Neuro Network
Structure

Figure 3 shows the proposed control scheme used in this
study. The PD controllers are provided both as an ordinary
feedback controller to guarantee global asymptotic stabil-
ity in compact space and as an inverse reference model of
the response of the system under control.
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Fig. 3. Block diagram of the proposed adaptive fuzzy neuro
control scheme

4.2 Fuzzy Neural Network (FNN)

The incoming signals, x1(t)=e(t) and x2(t)=ė(t), are
fuzzified by using Gaussian membership functions, which
are defined by their corresponding membership functions
µ1i(x1) and µ2j (x2) for i = 1, ...I and j = 1, ...J .

The fuzzy if-then rule Rij of a zeroth-order TSK model
with two input variables can be defined as follows:

Rij : If x1 is M1i and x2 is M2j , then fij=dij

where dij is a given constant.

The strength of the rule Rij is obtained as a T -norm of
the membership functions in the premise part (by using a
multiplication operator):

Wij = µ1i(x1)µ2j (x2) (11)
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The Gaussian membership functions µ1i(x1) and µ2j (x2)
of the inputs x1 and x2 in the above expression have the
following appearance:

µ1i (x1) = exp

[
− (x1 − c1i)

2

σ2
1i

]
(12)

µ2j (x2) = exp

[
−
(
x2 − c2j

)2
σ2
2j

]
(13)

where the real constants c, σ > 0 are among the tunable
parameters of the above fuzzy neural structure.

By inserting (12) and (13) into (11), the following expres-
sion is obtained:

Wij = exp

[
− (x1 − c1i)

2

σ2
1i

−
(
x2 − c2j

)2
σ2
2j

]
(14)

The output signal of the FNN τn(t) is calculated as a
weighted average of the output of each rule Jin (2003):

τn(t) =

∑I
i=1

∑J
j=1 fijWij∑I

i=1

∑J
j=1Wij

(15)

After normalization of (15), the output signal of the FNN
will acquire the following form:

τn(t) =
I∑

i=1

J∑
j=1

fijW ij (16)

where W ij is the normalized value of the output signal of
the neuron ij from the second hidden layer of the network:

W ij =
Wij∑I

i=1

∑J
j=1Wij

(17)

The input signal τ to the system to be controlled is as
follows:

τ = τc − τn (18)
where τc and τn are the control signals generated by the
PD controller and the FNN, respectively.

Due to the control scheme adopted (Fig. 3), where the
conventional controllers serve to guarantee global asymp-
totic stability in compact space, the input signals x1(t)
and x2(t), and their time derivatives can be considered
bounded:

|x1(t)| ≤ Bx, |x2(t)| ≤ Bx ∀t (19)

|ẋ1(t)| ≤ Bẋ, |ẋ2(t)| ≤ Bẋ ∀t (20)
where Bx and Bẋ are assumed to be some known positive
constants.

From (11)-(17) and (19)-(20), it follows that 0 < W ij ≤
1. In addition it can be easily seen from (17) that∑I

i=1

∑J
j=1W ij = 1.

Similarly, τ and τ̇ are bounded signals too, i.e.

|τ (t)| ≤ Bτ , |τ̇ (t)| ≤ Bτ̇ ∀t (21)

where Bτ and Bτ̇ are some known positive constants.

4.3 The Sliding Mode Learning Algorithm

Using sliding mode control (SMC) theory principles, the
zero value of the learning error coordinate τc (t) can be
defined as a time-varying sliding surface:

Sc (τn, τ) = τc (t) = τn (t) + τ (t) = 0 (22)

The sliding surface for the nonlinear system under control
Sp (e, ė) is defined as:

Sp (e, ė) = ė+ χe (23)

with χ being a constant determining the slope of the
sliding surface.

A sliding motion will appear on the sliding manifold
Sc (τn, τ) = τc (t) = 0 after a time th, if the condition

Sc(t)Ṡc(t) = τc (t) τ̇c (t) < 0 is satisfied for all t in
some nontrivial semi-open subinterval of time of the form
[t, th) ⊂ (0, th).

It is desired to devise a dynamical feedback adaptation
mechanism, or online learning algorithm for the FNN
parameters such that the sliding mode condition of the
above definition is enforced.

The Parameter Update Rules for the FNN

Theorem 1. If the adaptation laws for the parameters of
the considered FNN are chosen respectively as:

ċ1i = ẋ1 (24)

ċ2j = ẋ2 (25)

˙σ1i = − (σ1i)
3

(x1 − c1i)2
αsgn(τc) (26)

˙σ2j = − (σ2j)
3

(x2 − c2j)2
αsgn(τc) (27)

ḟij = − W ij

W
T
W
αsign (τc) (28)

where α is a sufficiently large positive design constant
satisfying the following inequality:

α > Bτ̇ (29)

then, given an arbitrary initial condition τc(0), the learning
error τc(t) will converge to zero during a finite time th.

The following vector in (28) has been specified as follows:

W (t) =
[
W 11 (t) W 12 (t) ... W ij (t) ... W IJ (t)

]T
Proof. The reader is referred to Appendix A.

The relation between the sliding line Sp and the zero

adaptive learning error level Sc, if χ is taken as χ = kP

kD
,

is determined by the following equation:

Sc = τc = kD ė+ kP e = kD

(
ė+

kp
kD

e

)
= kDSp (30)

The tracking performance of the feedback control system
can be analyzed by introducing the following Lyapunov
function candidate:

Vp =
1

2
S2
p (31)

Theorem 2. If the adaptation strategy for the adjustable
parameters of the FNN is chosen as in (24)-(28), then
the negative definiteness of the time derivative of the
Lyapunov function in (31) is ensured.

www.er
ka

nk
ay

ac
an

.co
m



Proof. The reader is referred to Appendix B.

Remark : The obtained result means that, assuming the
SMC task is achievable, using τc as a learning error for the
FNN together with the adaptation laws (24)-(28) enforces
the desired reaching mode followed by a sliding regime for
the system under control.

5. SIMULATION STUDIES

The numerical values used in this study are m = 9391 kg,
Iz = 35709 kg m2, lf = 1.7m, lr = 1.2m, Cα,f = 220KN
rad−1 and Cα,r = 486 KN rad−1. These numerical values
are collected from a John Deere MFWD tractor (model
7930, Deere and Co., Moline IL) Karkee and Steward
(2010). The sampling period of the simulations is set to
0.1 s. The number of membership functions for input 1
and input 2 is set to I = J = 3 for all the simulations.

While the coefficients of the PD controller for the yaw
motion dynamics are set to kp = 0.1 and kd = 0.001, the
coefficients for the traction dynamics are set to kp = 70000
and kd = 20 by trial-and-error method. The learning rates
for the FNN 1 and FNN 2 are set to 1 α1 = 10−2 and
2 α2 = 25, respectively. The coefficient of the interaction
model in (8) is set to K = 50000. During the simulations,
all the weight matrices in both premise and consequent
part of the rules are initialized randomly. The adhesion
coefficient µ is set to 0.6. The maximum interaction
between the wheels and the surface occurs when the peak
value of the longitudinal slip is sp = 0.2.

The following reference signals are applied to the system:

Reference(t) =

{
ψref (t) = 0.6sin(0.005t)rad
ucref (t) = 5m/s

(32)

As can be seen from Fig. 5, when the PD controllers act
alone, the control performances of both the longitudinal
dynamics and yaw dynamics are not reasonable. The
steady state errors both in yaw and longitudinal dynamics
are non-zero. The fine tuning of such controllers in real
life is challenging, because in addition to the interactions
of the subsystems, there exist unmodeled dynamics and
uncertainties in real world applications.

Figure 5 shows the condition when the PD controllers
are working in parallel with the FNNs in which the
control performance of both longitudinal dynamics and
yaw dynamics are improved. These results indicate that
FNNs are able to learn the system dynamics after a while,
and they can improve the overall performance of the
system without the need of fine tuning the conventional
controllers which is a very demanding process in real-life
applications.

Figure 6 shows the control signals coming from the con-
ventional PD controllers and FNNs. As can be seen from
Fig. 6, at the beginning, the dominating control signals
are the ones coming from the PD controllers. After a short
time, using the control signal τc, the FNNs are able to take
over the control, thus becoming the leading controllers.
This shows that PD controllers ensure the stability of the
system while the FNNs learn the system dynamics and
take the responsibility of the controlling of the vehicle in
the proposed control algorithm.
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Fig. 4. PD controllers working alone: (a) Yaw angle re-
sponse (b) Longitudinal velocity response (c) Yaw
angle error (d) Longitudinal velocity error
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Fig. 5. PD controllers working in parallel with FNNs: (a)
Yaw angle response (b) Longitudinal velocity response
(c) Yaw angle error (d) Longitudinal velocity error
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Fig. 6. (a) The control signals coming from PD controller
1 and FNN 1 (b) The control signals coming from PD
controller 2 and FNN 2
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6. CONCLUSION

The proposed control scheme consisting of two conven-
tional PD controllers working in parallel with two FNNs
is tested on a tractor model which has two subsystems in-
teracting with each other. For each subsystem, the control
structure proposed consists of a PD controller and a FNN
which is capable of learning the plant model online instead
of using accurate predefined dynamical equations of the
system. The use of the combination of fuzzy logic control,
artificial neural networks and sliding mode control theory
harmoniously allows us to better handle the interactions in
the subsystems, uncertainties and lack of modeling infor-
mation. In addition to its robustness, another prominent
feature is the computational simplicity of the proposed
approach. Encouraged by these simulation results, an ex-
perimental investigation is about to be launched.
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Appendix A. PROOF OF THEOREM 1

The time derivatives of (12) and (13) are as follows:

˙µ1i(x1) = −2A1i(A1i)
′µ1i(x1) (A.1)

˙µ2j(x2) = −2A2j(A2j)
′µ2j(x2) (A.2)

where

A1i =

(
x1 − c1i
σ1i

)
and A2j =

(
x2 − c2j
σ2j

)
(A.3)

The time derivative of (17) can be obtained as follows:

Ẇ ij = −W ijK̇ij +W ij

I∑
i=1

J∑
j=1

(
W ijK̇ij

)
(A.4)

where

K̇ij = 2
(
A1i(A1i)

′ +A2j(A2j)
′
)

By using the following Lyapunov function, the stability
condition can be checked:

Vc =
1

2
τ2c (t) (A.5)

The time derivative of Vc is given by:

V̇c = τcτ̇c = τc(τ̇n + τ̇) (A.6)

where

τ̇n =

I∑
i=1

J∑
j=1

( ˙fijWij + fijẆij) (A.7)

By replacing (A.7) to the (A.6), (A.8) is obtained:

V̇c = τc

(
I∑

i=1

J∑
j=1

(
ḟijW ij + fij

(
−W ijK̇ij (A.8)

+W ij

I∑
i=1

J∑
j=1

W ijK̇ij

))
+ τ̇

)

= τc

[ I∑
i=1

J∑
j=1

ḟijW ij − 2
I∑

i=1

J∑
j=1

W ij

(
A1i(A1i)

′

+A2j(A2j)
′
)
fij

+ 2

I∑
i=1

J∑
j=1

(
W ijfij

I∑
i=1

J∑
j=1

W ij

(
A1i(A1i)

′

+A2j(A2j)
′
))

+ τ̇

]
where

Ȧ1i =
(ẋ1 − ˙c1i)σ1i − (x1 − c1i) ˙σ1i

σ1i2

Ȧ2j =
(ẋ2 − ˙c2j)σ2j − (x2 − c2j) ˙σ2j

σ2j2

Equation (A.9) can be obtained by using (24)-(27);

A1iȦ1i = A2jȦ2j = αsgn(τc) (A.9)

V̇c = τc

[ I∑
i=1

J∑
j=1

ḟijW ij − 4

I∑
i=1

J∑
j=1

W ij

(
αsgn(τc)

)
fij+

+ 4

I∑
i=1

J∑
j=1

(
W ijfij

I∑
i=1

J∑
j=1

W ij(αsgn
(
τc)
))

+ τ̇

]

= τc

[ I∑
i=1

J∑
j=1

ḟijW ij + τ̇

]
where

ḟij = − W ij

W
T
W
αsign (τc) (A.10)

V̇c = τc

[
− αsgn(τc) + τ̇

]
=

[
− α|τc|+ |τc|Bτ̇

]
< 0 (A.11)

Appendix B. PROOF OF THEOREM 2

Evaluating the time derivative of the Lyapunov function
in (31) yields:

V̇p = ṠpSp =
1

k2D
ṠcSc

≤ |τc|
k2D

[
−α+Bτ̇

]
< 0, ∀Sc, Sp ̸= 0

(B.1)
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